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Abstract

Background: Face mask mandates have been instrumental in the reduction of transmission of airborne COVID-19. Thus, the
question arises whether comparatively mild measures should be kept in place after the pandemic to reduce other airborne diseases
such as influenza.

Objective: In this study, we aim to simulate the quantitative impact of face masks on the rate of influenza illnesses in the United
States.

Methods: Using the Centers for Disease Control and Prevention data from 2010 to 2019, we used a series of differential equations
to simulate past influenza seasons, assuming that people wore face masks. This was achieved by introducing a variable to account
for the efficacy and prevalence of masks and then analyzing its impact on influenza transmission rate in a
susceptible-exposed-infected-recovered model fit to the actual past seasons. We then compared influenza rates in this hypothetical
scenario with the actual rates over the seasons.

Results: Our results show that several combinations of mask efficacy and prevalence can substantially reduce the burden of
seasonal influenza. Across all the years modeled, a mask prevalence of 0.2 (20%) and assumed moderate inward and outward
mask efficacy of 0.45 (45%) reduced influenza infections by >90%.

Conclusions: A minority of individuals wearing masks substantially reduced the number of influenza infections across seasons.
Considering the efficacy rates of masks and the relatively insignificant monetary cost, we highlight that it may be a viable
alternative or complement to influenza vaccinations.

(JMIRx Med 2022;3(2):e31955) doi: 10.2196/31955
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Introduction

In March 2020, the World Health Organization officially
declared COVID-19 a global pandemic, as it extended beyond
borders and reached various parts of the world [1]. The spread
of the virus has halted several activities and has placed
uncertainty on future events. Scientists and researchers have
recommended safety measures such as social distancing, wearing
of masks, and quarantines to reduce infection rates or “flatten
the curve” [2]. Fortunately, the mechanism of airborne infections
has been well studied. In a social environment, oral fluid
droplets filled with viral particles can travel from person to
person [3]. Several studies indicate that the spread of such
droplets can be reduced by facial coverings such as face masks
[4]. As such, many governments have issued face mask
mandates in public places in efforts to stop the spread of disease.
In the advent of this new reality, recent analysis of respiratory
specimens from 2018 to 2020 in Hong Kong indicate that rates
of other respiratory pathogens such as respiratory syncytial virus
and influenza are decreasing with increased mask-wearing [5].
This is not unique to Hong Kong; data from the United States,
Australia, Chile, and South Africa also show significantly
reduced rates of influenza following the widespread adoption
of nonpharmaceutical interventions such as masks [6].

Noting the success achieved by this nonpharmaceutical measure,
we ask if similar but less stringent measures should be kept in
place after the COVID-19 pandemic to deal with influenza,
which is another pertinent airborne disease.

To gain an in-depth and quantitative understanding of face
masks’ impact on the reduction in influenza activity, we simulate
how past influenza seasons 2010/2011 to 2018/2019 would have
played out had people worn masks. The simulations were

developed using deterministic compartmental models with the
incorporation of variables to account for the impact of masks.
Using publicly available influenza infection data for the past
seasons from the Centers for Disease Control and Prevention
(CDC), the influenzas transmission rates model for each season
(2010/2011 to 2018/2019) was calibrated. We then simulated
the seasons factoring in different scenarios of mask prevalence
as well as inward-outward filtration efficacy of masks.

Methods

Susceptible-Exposed-Infected-Recovered Model and
Parameters
Susceptible-exposed-infected-recovered (SEIR) models are a
standard disease modeling technique in epidemiology. The
population is compartmentalized into various groups:
susceptible, exposed, infected, and recovered. Susceptible is
the population susceptible to the disease. The exposed
population are infected but have not been detected by testing.
Infected is the population who have been confirmed to be
infected and can transmit the disease. Recovered is the
population who are recovered. To develop the SEIR model, the
relationship between these groups is then mathematically
characterized by differential equations. In our model, we used
a basic SEIR model with a time-dependent transmission rate
that is described by the following equations (Table 1):

Table 1. Variables used in equations.

ParameterVariable

SusceptibleS

ExposedE

InfectedI

RecoveredR

Probability of disease transmission per contact times the number of contacts
per unit time

β

Rate of progression from exposed to infectious or inverse of the incubation
period

δ

Rate of progression from infected to recovered or the inverse of the gener-
ation time

γ

Total population (S + E + I + R)N

Since the flu fatality rates are insignificant in relation to the
total population [7], deaths from the flu and unrelated births
and deaths were disregarded.

The transmission rate β(t) is described as the number of contacts
an infected individual has per timestep, multiplied by the
probability of disease transmission in a contact. Thus, as only

 of the population can be infected, every infected individual

infects β(t) individuals per timestep.

In regard to influenza, all parameters of the SEIR model except
the time-dependent transmission rate (β(t)) are publicly available
via CDC data [8]. The CDC collects and compiles influenza
activity year round in the United States. This is accomplished
via the National Respiratory and Enteric Virus Surveillance
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System and the US World Health Organization Collaborating
Laboratories System. This program consists of about 100 public
health and 300 clinical laboratories throughout all 50 states,
Puerto Rico, and the District of Colombia. All public health and
clinical laboratories report the total number of tested specimen
and the positive influenza tests. Since the influenza disease
burden is based on testing and hospital reports, it is susceptible
to underreporting. For example, there are cases where people
with the flu may not report to the CDC or go see a health care
provider. Therefore, to correct for this underreporting, the CDC
uses a multiplier method with a routine population-based
surveillance program to extrapolate a data set more
representative of actual case rates [8].

We estimated β(t) by fitting the model to the scaled past
infection data.

To account for mask use, a simplified version of the model used
by Eikenberry et al [9] was adopted.

mpre∈ [0, 1] is the mask prevalence, taken as the proportion of
contacts in which an individual wears a mask. We assume that
infection status does not affect mask-wearing behavior.

meffI ∈ [0, 1] is the efficacy of mask use by the infected
individual (ie, the reduction of the chance of infection when
only the infected individual wears a mask).

meffS ∈ [0, 1] is the efficacy of mask use by the susceptible
individual (ie, the reduction of the chance of infection when
only the susceptible individual wears a mask).

Consequently, we assumed that the reduction of the chance of
infection when both individuals in a contact wear a mask is 1
− (1 − meffI) · (1 − meffS). For example, if the outward efficacy
is 0.7 and the inward efficacy is 0.9, then the infection only
happens in 3% of contacts where both individuals wear a mask.
We combined the parameters to define the mask impact m ∈
[0, 1], the proportion of contacts in which masks prevent an
infection given the three parameters previously listed—that is,
the sum of the proportions of contacts prevented if both
individuals wear masks, only the infectious individual wears a
mask, only the susceptible individual wears a mask, or no one
wears a mask, leading to the following formula that sums these
four cases up:

To incorporate m (the proportion of contacts prevented through
mask use) into the model, note that without masks, every

infected individual infects β(t) individuals per

timestep—thus, with masks, this changes to (1 – m) ⋅ β(t) ,
and we get the following model:

We will now look at the data used to fit β(t) for this model to
past flu seasons (without masks; ie, with m=0).

Infection Data
The CDC FluView application [10] provides weekly numbers
of positive flu tests (we did not separate between different
strains) in public health and clinical laboratories for the seasons
2010/2011 to 2018/2019. As mentioned previously, data from
weekly numbers of infected individuals were extrapolated from
weekly numbers of positive tests using the CDC’s estimated
total number of infections per season.

For any season, let Pi be the number of positive flu tests in week
i. Let T be the total number of infections for the season. We
assume that the number of positive tests is proportional to the
actual number of infected Ii, that is, Ii = λPi, for all weeks i, for
a fixed (per season) scaling factor λ>0. As infections persist on
average, the sum of the infected per week over all weeks is
(approximately) the total number of infections for the season:

i Ii=T

Therefore, i λPi = i Ii = T and the season’s scaling factor can be
solved with:

For each season, we calculated the scaling factor λ and used it
to scale the CDC data.

Beta Estimation From Infection Data
To estimate the time-dependent transmission rate, we fit a
seasonal function of the form:

to the scaled data for each season, similar to the approaches by
Towers and Feng [11] and Towers et al [12].

Timesteps t are in weeks. The incubation period and generation
time are adapted from Mummert and Otunuga [13], yielding

γ=1.0 (infections last 1 week) and (incubation period
of 2 days).

Least squares fitting using the LMFIT Python library [14]
yielded good fits on all seasons (Figure 1).
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Figure 1. Results of the transmission rate fitting to data of past flu seasons. Actual infection data and prediction for influenza seasons 2010/2011 to
2018.

Results

We simulated the past influenza seasons with the estimated
transmission rate β(t) and compare the outcome with and without
masks. As evidenced by MacIntyre and Chughtai [15] and
Brienen et al [16], mask efficacy is highly uncertain. Therefore,
different combinations of mask prevalence and outward and
inward efficacy were implemented (Figure 2).

From May to December 2020, mask use during the COVID-19
pandemic in the United States ranged from 50% to 70% [17].

Data from Pan et al [18] indicated that common fabrics such as
a thin cotton bandana (two-ply) has a mask efficacy between
0.3 to 0.5 (30%-50%). We believe it is unlikely that mask
prevalence will be as high after the COVID-19 pandemic
without a mask mandate. Bearing this in mind, we look at two
scenarios we deemed the most relevant: the mask mandate
scenario with a mask prevalence of 0.5 (50%) and outward and
inward efficacies of 0.35 (35%), and the masks suggested
scenario with a prevalence of 0.2 (20%) and outward and inward
efficacies of 0.45 (45%).

Figure 2. Reduction of total infections over all seasons pertaining to total infected mask wearing population and (meffi), and total susceptible mask
wearing population (meffs) at mask prevalence levels (mpre) = 0.2 (20%), 0.4 (40%), 0.6 (60%) and 0.8 (80%).
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Discussion

Our simulations showed that the “mask suggested scenario,”
with relatively low mask prevalence of around 0.2 (20%) and
assumed moderate inward and outward efficacy of 0.45 (45%),

would have substantially reduced influenza infections by >90%
over several past seasons. The “mask mandate scenario,” with
0.5 (50%) mask prevalence combined with an efficacy of 0.35
(35%), led to >95% reduction in influenza illnesses across
seasons (Figure 3).

Figure 3. Simulated weekly infections for mask suggested scenarios (left) and mask mandate scenarios (right).

The findings show that when mask prevalence is high, for
example, over 0.6 (60%), low mask efficacies (caused by masks
worn too long, that are loose-fitting, etc) are sufficient to fully
contain the flu. With that, it appears that a minority of
disciplined mask wearers is sufficient to prevent most infection.

Currently, vaccinations are the prominent way to protect against
influenza, having been available on a large scale since 1945
[13]. However, vaccination rates in the United States are not
high enough to provide herd immunity [14]. In fact, flu
vaccinations averted around 15% to 20% of influenza illnesses
over the seasons from 2011/2012 to 2018/2019 [19]. Suggested
data from this paper indicate that mask mandates in collaboration
with vaccinations may be a more formidable tool against curbing
influenza. Unlike masks, vaccines have to be newly
manufactured each season with significant R&D investments.
Nevertheless, vaccines only have to be administered once per
year while face masks would need to be worn continuously.
The continuous use of face masks in public spaces may be seen
as more burdensome by the general population.

The economic burden of seasonal influenza in the United States
is about US $6.3 to US $25.3 billion [20]. Assuming the
economic cost scales linearly with the number of infections, a
scenario in which at least 95% of infections are reduced (which
includes both the mask mandate and masks suggested scenarios)
saves US $6 to US $24 billion per season at negligible cost.
Similar to public opinion regarding potential health hazards
such as smoking and driving without seatbelts shifting over
time and legislation being introduced, we can imagine the
COVID-19 pandemic changing public (and expert) opinion
toward everyday mask use. Although, large parts of the
population might be tired of wearing masks after the COVID-19
pandemic. Public opinion shifts, but at least a minority of
individuals may wear masks. Our simulations show that this
would substantially reduce the burden of seasonal influenza at
little monetary cost.

The limitations of our approach include no stratification by age
or contact scenario, significant uncertainties in mask use and
efficacy, and disregard of other nonpharmaceutical interventions.
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